
Introduction to Variational AutoEncoder

Mallikarjun S
Electrical Communication
Indian Institute of Science

mallikarjun1@iisc.ac.in

Rajendra P Singh
Electronics Systems

Indian Institute of Science
rajendraps@iisc.ac.in

Ronak D Dedhiya
Computational

and Data Science(CDS)
Indian Institute of Science

ronakdedhiya@iisc.ac.in

Abstract

Variational Autoencoders (VAEs) have emerged as one of the most popular ap-
proaches to unsupervised learning of complicated distributions. We introduce
intuitions behind VAEs, explains the mathematics behind them and attempts to do
qualitative assessment of learned latent factors and generated samples using basic
VAE, conditional VAE in conjugation with β - VAE.

1 Introduction

Variational Autoencoders (VAEs) are powerful generative models that merge elements from statistics
and information theory with the flexibility offered by deep neural networks to efficiently solve
the generation problem for high-dimensional data. The key insight of VAEs is to learn the latent
distribution of data in such a way that new meaningful samples can be generated from it. This
approach led to tremendous research and variations in the architectural design of VAEs, nourishing
the recent field of research known as unsupervised representation learning.

Having a representation that is well suited to the particular task and data domain, can significantly
improve the learning success and robustness of the chosen model [1]. VAE find applications in
learning a disentangled representation of the generative factors in the data can be useful for a large
variety of tasks and domains [2].A modified version of VAE provides a generative way to learn
encoded state; where a change in one dimension corresponds to a change in one factor of variation,
keeping almost no change in other factors [3].The influential factors in VAE are also analyzed in the
paper [4].

Also there are interesting extensions to VAE in conjugation with other techniques. Generative
adversarial networks [5] usually generate more clear images; therefore, some works have combined
variational and adversarial inferences [6, 7] for using the advantages of both models. Variational
discriminant analysis [8] has also been proposed for classification and discrimination of classes. For
image data, modelling the images with caption, a fusion of VAE and convolutional neural network
is also proposed [9]. RNN in combination with VAE exploits the learning of distributed latent
representation of entire sentence explicitly modelling style, topic and high level synaptic features
[10].DRAW[11] attempts to generate images step by step correlated to natural form of painting,
sketching which involves sequential and iterative steps. It utilizes Deep recurrent attention network
with VAE for iterative construction of complex images.

Although VAEs were principally designed as generative models for image and text generation, [12]
have leveraged some of the qualities of VAE in the anomaly detection domain. In this paper, we will
perform the qualitative assessment of standard VAE and conditional VAE in conjugation with β VAE
while understanding mathematics intuition behind the framework.

Preprint. Under review.

2 The Variational Autoencoder

Generative modeling is a broad area of machine learning which deals with models of distributions
P(X), defined over datapoints X in some potentially high-dimensional space χ . Usually X is
distributed according to some unknown distribution Pgt(X), and our goal is to learn a model P which
we can sample from, such that P is as similar as possible to Pgt . Currently, one of the most popular
frameworks is the Variational Autoencoder. The assumptions of this model are weak, and training
is fast via backpropagation. VAEs do make an approximation, but the error introduced by this
approximation is arguably small given high-capacity models. These characteristics have contributed
to a quick rise in their popularity.

2.1 Latent variable model

Formally, say we have a vector of latent variables z in a high-dimensional space Z which we can
easily sample according to some probability density function (PDF) P(z) defined over Z. Then, say
we have a family of deterministic functions f (z;θ), parameterized by a vector θ in some space θ ,
where f : Z ×θ −→ X . We wish to optimize θ such that we can sample z from P(z) and, with high
probability, f (z;θ) will be like the X’s in our dataset. To make this notion mathematically precise, we
are aiming maximize the probability of each X in the training set under the entire generative process,
according to

P(X) =
∫

P(X/z;θ)P(z)dz (1)

To solve Equation (1), how to define the latent variables z (i.e., decide what information they
represent), VAE assumes that there is no simple interpretation of the dimensions of z, and instead
assert that samples of z can be drawn from a simple distribution, i.e., N(0, I), where I is the identity
matrix. How is this possible? The key is to notice that any distribution in d dimensions can be
generated by taking a set of d variables that are normally distributed and mapping them through a
sufficiently complicated function. For example, say we wanted to construct a 2D random variable
whose values lie on a ring. If z is 2D and normally distributed, g(z) = z/10+ z/ ∥ z ∥ is roughly
ring-shaped. Hence, provided powerful function approximators, we can simply learn a function
which maps our independent, normally-distributed z values to whatever latent variables might be
needed for the model, and then map those latent variables to X .

2.2 Setting up the objective

The key idea behind the variational autoencoder is to attempt to sample values of z that are likely
to have produced X , and compute P(X) just from those. This means that we need a new function
Q(z|X) which can take a value of X and give us a distribution over z values that are likely to produce
X . Hopefully the space of z values that are likely under Q will be much smaller than the space of
all z’s that are likely under the prior P(z). This lets us, for example, compute Ez∼QP(X |z) relatively
easily. However, if z is sampled from an arbitrary distribution with PDF Q(z), which is not N(0, I),
then how does that help us optimize P(X)? The relationship between Ez∼QP(X |z) and P(X) is one of
the cornerstones of variational Bayesian methods. We begin with the definition of Kullback-Leibler
divergence (KL divergence or D) between P(z|X) and Q(z), for some arbitrary Q (which may or may
not depend on X):

D[Q(z) ∥ P(z|X)] = Ez∼Q[logQ(z)− logP(z|X)] (2)

We can get both P(X) and P(X |z) into this equation by applying Bayes rule to P(z|X):

D[Q(z) ∥ P(z|X)] = Ez∼Q[logQ(z)− logP(X |z)− logP(z)]+ logP(X). (3)

Here, logP(X) comes out of the expectation because it does not depend on z. Negating both sides,
rearranging, and contracting part of Ez∼Q into a KL-divergence terms yields:

logP(X)−D[Q(z|X) ∥ P(z|X)] = Ez∼Q[logP(X |z)]−D[Q(z|X) ∥ P(z)] (4)

This equation serves as the core of the variational autoencoder. In two sentences, the left hand side
has the quantity we want to maximize: logP(X) (plus an error term, which makes Q produce z’s
that can reproduce a given X ; this term will become small if Q is high-capacity). The right hand
side is something we can optimize via stochastic gradient descent given the right choice of Q. Note
that the framework—in particular, the right hand side of Equation (4) has suddenly taken a form

2

Figure 1: A training-time variational autoencoder implemented as a feedforward neural network,
where P(X|z) is Gaussian. Left is without the “reparameterization trick”, and right is with it. Red
shows sampling operations that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied only to the right network.

which looks like an autoencoder, since Q is “encoding” X into z, and P is “decoding” it to reconstruct
X . Starting with the left hand side, we are maximizing logP(X) while simultaneously minimizing
D[Q(z|X) ∥ P(z|X)]

2.3 Optimizing the objective

First we need to be a bit more specific about the form that Q(z|X) will take. The usual choice is to
say that Q(z|X) = N(z|µ(X ;θ),Σ(X ;θ)), where µ and Σ are arbitrary deterministic functions with
parameters θ that can be learned from data (we will omit θ in later equations). In practice, µ and
Σ are again implemented via neural networks, and Σ is constrained to be a diagonal matrix. The
advantages of this choice are computational, as they make it clear how to compute the right hand
side. The last term D[Q(z|X) ∥ P(z)] is now a KL-divergence between two multivariate Gaussian
distributions, which can be computed in closed form. After all, we are already doing stochastic
gradient descent over different values of X sampled from a dataset D. The full equation we want to
optimize is:

EX∼D[logP(X)−D[Q(z|X) ∥ P(z|X)]] = EX∼D[Ez∼Q[logP(X |z)]−D[Q(z|X) ∥ P(z)]] (5)

If we take the gradient of this equation, the gradient symbol can be moved into the expectations.
Therefore, we can sample a single value of X and a single value of z from the distribution Q(z|X),
and compute the gradient of:

logP(X |z)−D[Q(z|X) ∥ P(z)] (6)

We can then average the gradient of this function over arbitrarily many samples of X and z, and the
result converges to the gradient of Equation (5).

2.4 Reparametrization trick

To see the problem a different way, the network described in Equation (6) is much like the network
shown in Figure 1(left). The forward pass of this network works fine and, if the output is averaged over
many samples of Xand z, produces the correct expected value. However, we need to back-propagate
the error through a layer that samples z from Q(z|X), which is a non-continuous operation and has
no gradient. Stochastic gradient descent via backpropagation can handle stochastic inputs, but not
stochastic units within the network! The solution, called the “reparameterization trick” in [13], is to
move the sampling to an input layer. Given µ(X) and Σ(X)—the mean and covariance of Q(z|X). we
can sample from N(µ(X),Σ(X)) by first sampling e∼N(0, I), then computing z= µ(X)+Σ1/2(X) ·e.
This is shown schematically in Figure 1(right).

3

Figure 2: VAE Model with 2 convolutional layers (1 and 32 filter of 3x3 kernel size) having batch
normalization at each stage followed by Relu activations at different *epochs = 10 (left) and epochs =
100 (right)*.

2.5 Testing the learned model

At test time, when we want to generate new samples, we simply input values of z ∼ N(0, I) into the
decoder. That is, we remove the “encoder,” including the multiplication and addition operations that
would change the distribution of z.

3 Extended VAE - Beta VAE

If each variable in the inferred latent representation is only sensitive to one single generative factor
and relatively invariant to other factors, we will say this representation is disentangled or factorized.
One benefit that often comes with disentangled representation is good interpretability and easy
generalization to a variety of tasks.

β -VAE[2] is a modification of Variational Autoencoder with a special emphasis to discover disentan-
gled latent factors. Following the same incentive in VAE, we want to maximize the probability of
generating real data, while keeping the distance between the real and estimated posterior distributions
small (say, under a small constant The loss function of β -VAE is defined as:

Lβ (φ ,β) =−Ez∼QlogP(X/z)+βD[Q(z|X) ∥ P(z)] (7)

When β = 1 it is same as VAE. When β > 1 it applies a stronger constraint on the latent bottleneck
and limits the representation capacity of z . For some conditionally independent generative factors,
keeping them disentangled is the most efficient representation. Therefore a higher β encourages
more efficient latent encoding and further encourages the disentanglement. Meanwhile, a higher may
create a trade-off between reconstruction quality and the extent of disentanglement.

4 Extended VAE - Conditional VAE

Conditional Variational Autoencoder (CVAE) is an extension of Variational Autoencoder (VAE).
We have no control on the data generation process on VAE. This could be problematic if we want
to generate some specific data. As an example, suppose the user inputted character ‘2’, how do we
generate handwriting image that is a character ‘2’? We couldn’t. Hence, CVAE [14] was developed.
Whereas VAE essentially models latent variables and data directly, CVAE models latent variables and
data, both conditioned to some random variables. To condition on additional inputs, we do not need
do any derivation, We just need to condition all the distribution with another variable c. Hence our
objective is modified as

EX∼D[logP(X |c)−D[Q(z|X ,c) ∥ P(z|X ,c)]] = EX∼D[Ez∼Q[logP(X |z,c)]−D[Q(z|X ,c) ∥ P(z,c)]]
(8)

4

5 Experiment and Results

We implemented vanilla VAE using 2 convolution layer networtk and observed the change in latent
distribution during the training. As shown in 2, As Epoch increases, we see that model inherently
find similarity among data points belonging to similar class. We observe that latent distribution is
approaching towards zero mean and unit variance from epochs = 100 (right) We also experimented
with the latent capacity of the model by trying latent vector of length = 2 and 23. As shown in 3, we
see as latent capacity of model is increased, the latent vectors shows fewer overlap.

Figure 3: (Left) shows the latent distribution with 2 latent vector. (Right) shows latent distrbution
with 23 dimension vector

We combined MNIST and A-Z Handwritten Alphabets Dataset to create Alpha-numeric dataset
and used it to train a Conditional Variational Autoencoder network. we constructed CVAE as
convolutional encoder-decoder architecture with 2 layers of Convolutional, Pooling Layer followed
by Dense layer. Architecture is simialar to vanilla VAE, 2 dense output are taken from encoder as
mean and variance latent vector which are then sampled using reparametrization trick before feeding
to decoder. Decoder has additional label information as an input to allow conditioning during data
generation inference.

Figure 4: [a] x1 to x6 are the latent vectors, num is slider for label [0-9 -> numeric, 10-35 -> Alphabets
(A-Z)], x is the text input to generate sentences. [b] It is the generated alphabet when num is set to
19, varying latent slider, different version of J are generated. [c] It is the generated text output using
the text editor input and latent vector

As shown in 4, we have more control on data generation process with inclusion of label information.
We provide label information either with num slider or as text box input, along with x1-x6 latent
vector the decoder generate new samples which vary based on the change in latent vector in style,
boldness, angle etc.

Similarly, we extended Conditional VAE to Beta VAE by varying the beta parameter in loss function.
We experimented with differnt values of β = 1e−3,1e−2,1e−1,1,10,100,1024 as shown in 5. We
observed that as beta decreases, reconstruction loss become more dominant and better reconstruction
output is obtained whereas higher value of beta encourages learning a disentangled representation of
latent vector. The extra pressures coming from high values, however, may create a trade-off between
reconstruction fidelity and the quality of disentanglement within the learnt latent representations.

5

Also as shown in 6, with increase in the beta, the variance of the latent vector shrinkages as also
evident from 5.

Figure 5: (Left Side) shows tsne plot of latent vector for various beta. (Right Side) is the image
generated for corresponding beta

Figure 6: Comparision of variance in parameters for different beta to select paratmeters with high
variance.

6 Conclusion

We experimented with vanilla VAE and observed how latent distribution changes as training progress.
we also observed the how latent capacity of model can improve the models. To overcome the
limitation of generating data based on choice, We experimented with conditional VAE and generated
sentences and number by sampling from the distribution and providing label information. Post we
observed the effect of Beta VAE on conditional VAE where with increase in beta, model encourages
towards disentangled representation of latent vectors. Overall, we infer from our study that VAE are
very powerful generative networks and also aids in modelling the distribution through latent varible
model.

References

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new per-
spectives,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 8,
pp. 1798–1828, 2013.

6

[2] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Ler-
chner, “beta-vae: Learning basic visual concepts with a constrained variational framework,”
2016.

[3] H. Kim and A. Mnih, “Disentangling by factorising,” arXiv preprint arXiv:1802.05983v3, 2019.

[4] S. Liu, J. Liu, Q. Zhao, X. Cao, H. Li, D. Meng, H. Meng, and S. Liu, “Discovering influential
factors in variational autoencoders,” Pattern Recognition, vol. 100, p. 107166, 2020.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems,
vol. 27, 2014.

[6] L. Mescheder, S. Nowozin, and A. Geiger, “Adversarial variational bayes: Unifying variational
autoencoders and generative adversarial networks,” in International Conference on Machine
Learning, pp. 2391–2400, PMLR, 2017.

[7] H. Huang, Z. Li, R. He, Z. Sun, and T. Tan, “Intro vae: Introspective variational autoencoders
for photographic image synthesis,” Neural Information Processing Systems, 2018.

[8] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and survey,”
arXiv preprint arXiv:2101.00734, 2021.

[9] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder
for deep learning of images, labels and captions,” Advances in neural information processing
systems, vol. 29, 2016.

[10] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio, “Generating
sentences from a continuous space,” arXiv preprint arXiv:1511.06349, 2015.

[11] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, “Draw: A recurrent neural
network for image generation,” in International Conference on Machine Learning, pp. 1462–
1471, PMLR, 2015.

[12] X. Wang, Y. Du, S. Lin, P. Cui, Y. Shen, and Y. Yang, “advae: A self-adversarial variational
autoencoder with gaussian anomaly prior knowledge for anomaly detection,” Knowledge-Based
Systems, vol. 190, p. 105187, 2020.

[13] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[14] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep conditional
generative models,” Advances in neural information processing systems, vol. 28, 2015.

7

	Introduction
	The Variational Autoencoder
	Latent variable model
	Setting up the objective
	Optimizing the objective
	Reparametrization trick
	Testing the learned model

	Extended VAE - Beta VAE
	Extended VAE - Conditional VAE
	Experiment and Results
	Conclusion

